Search results

Text

Scratch 2.0 tutorial

This tutorial provides step-by-step instructions to support the learning of Scratch, a visual programming language. The tutorial is designed for educators who would like to learn how to use Scratch.

Text

Kim review: Systems thinking

This article explores the types of systems in our world, their characteristics and how our behaviour can initiate and respond to changes in their performance. The author differentiates between systems thinking and a system and elaborates on those factors that contribute to systemic behaviour.

Text

Books for exploring Digital Technologies concepts

This PDF provides a list of suggested books or similar that identify and discuss key concepts, key ideas and related ways of thinking about Digital Technologies.

Text

Scratch 3.0 tutorial

This tutorial provides step-by-step instructions to support the learning of Scratch, a visual programming language. The tutorial is designed for educators who would like to learn how to use Scratch.

Video

Expert webinar video: Nathan Alison, Digital Learning and Teaching Victoria (DLTV): Focus on systems thinking. How do we teach it well?

Nathan Alison from Digital Learning and Teaching Victoria (DLTV) explains what systems thinking is and how it is used in the context of Digital Technologies. Nathan explains what we need to consider when teaching digital systems, covering topics such as networks, hardware and software protocols, people and processes.

Text

Australian Curriculum: Digital Technologies: years 7-8

This PDF provides a line of sight from content descriptions to achievement standards in the Digital Technologies subject in the Australian Curriculum.

Video

Expert webinar video: Dr Michelle Ellis: Learning resources for using micro:bits

Dr Michelle Ellis gives a demonstration of the Edith Cowan University Makerspace visual and general-purpose programming environment. She also shows a range of materials to support the implementation of the Australian Curriculum: Digital Technologies. This includes teaching resources and lesson plans.

Video

Activities that promote Digital Technologies concepts and incorporate Numeracy: part 1: Introduction and overview: accessing the Australian Curriculum National Numeracy Learning progression

This video provides an introduction to the ways in which Digital Technologies can be used to develop students' learning in the Numeracy Learning Progression.

Text

Computational thinking cut out cards

This set of printable cards provides definitions of six aspects of computational thinking.

Video

Computational thinking in the Australian Curriculum: Digital Technologies

This video provides an overview of computational thinking and how it can be taught in the context of other learning areas.

Text

Australian Curriculum: Digital Technologies key concepts mapping: years 7-8

This PDF uses colour coding to provide a line of sight between key concepts, content descriptions and achievement standards in the Digital Technologies subject in the Australian Curriculum.

Text

Australian Curriculum: Digital Technologies Years 7-8 Sample Assessment Task: Digital Systems

The Years 7-8 assessment task focuses on digital systems (integrating Digital Technologies and Science). The digital systems assessment task provides a scaffold to teach about and assess students’ understanding of how digital systems can be used to monitor the classroom learning environment. learn how to create environmental ...

Downloadable

DT Challenge - 7/8 Python - Networking with Micro:Bit

Learn how to code the micro:bit to use the radio! In this DT Mini Challenge, you can create wireless networks to send pictures and messages around the room! You'll start by sending simple messages, but work up to making your own interactive games with your friends! Dive on in and you'll be sending secret messages in no time!

Online

Coding for GUIs Lesson 4: Flipping images

This is the fourth in a series of lessons to incorporate graphical user interfaces (GUIs) into your general-purpose programming. The series follows on from the Visual to text coding lesson series.

Online

Sphero young inventors

In this lesson students will explore the use of Sphero in the everyday world by adding accessories to invent solutions to workplace or other problems or simply by inventing an adaptation to the device. In each case, they are to build the accessory and create the code required for the device to serve a particular purpose. ...

Online

Visual to text coding: Lesson 11

This is the eleventh in a series of lessons to transition from visual coding to text-based coding with a General Purpose Programming language. It builds on the coding concept of functions. With the addition of parameters, functions allow the programmer to adapt their reusable code’s behaviour, tapping into the Computational ...

Online

Coding for GUIs Final project: A complete application with GUI

This is the final project in a series of lessons to incorporate Graphical User Interfaces (GUIs) into your General Purpose Programming. The series follows on from the Visual To Text Coding lesson series.

Online

Coding a sentimental chatbot in Python

Incorporating 11 tutorial videos and two informative lecture videos, this learning sequence explores natural language processing, a significant application of artificial intelligence. Teachers and students are led through the coding in Python of a chatbot, a conversational program capable of responding in varied ways to ...

Online

Visual to text coding: Lesson 10

This is the tenth in a series of lessons to transition from visual coding to text-based coding with a General Purpose Programming language. This lesson may take two to three 45-minute periods. It introduces the coding concept of functions. Functions can help organise code, reduce repetition and more to be explored later.

Online

Visual to text coding: Lesson 4

This is the fourth in a series of lessons to transition from visual coding to text-based coding with a General Purpose Programming language. This lesson may take two to three 45-minute periods. It introduces the combining of logical operators and and or for more complex decisions.